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RECTANGULAR B~AMS

By C. Dumont and H. N. lIill

experimental anfi analytical studies were made of
solid an?i hollow deep rectangular beams to study their
lateral instability under various conditions of loading
and restraint. , The tests were made on bars and tubes
of 17S’T aluminum alloy. Failure by lateral buckling oc-
curred only in tests on the solid beams. It was found
that , within the elas%ic range, the test results were in
agreement with the classical t-heory for the lateral
buckling of deep beams as Eiven by Prandtl, Michell, and
Timoshenko. 2he tests were exten@ed to the inelastic
range where it was found that the substitution for
Youngls moflulus of an average modulus of elasticity de-
rived from, the stress-strain curve made it possible to
predict instability at high stresses.

INTRODUCTION

Rectangular bars are occasionally usel in the form
of beams with the lon~ dimension of t-he rectangle in the
plane of the loafis. Then the depth of such a beam is
ereat comparefl with the width, the beam may become un-
stable in a lateral Iirection with a consequent sidewise
huckline, perhaps at a stress below the yiel~ strength
of the material.. This action is similar to the buckling
of a column under an axial load. In the lateral buck-
ling of beams, however, the stablli’ty depenfls on the tor-
sional as well as the flexural stiffness. A con”s”idera-
tion of stability is frequently of greater importance in
?lesign.in~ with aluminum alloys than ft is with other
structural materials having higher rnoduli of elasticity.
It seems desirable to include in the Handbook,- l!Struc-

.

tural .Aluminum,li a section on lateral stability of beams,.
In order to arrive at a suitable formula for allowable
working stresses, it is necessary to have an understand-
ing of the factors contributing to the lateral stability



2 N.A. C.A. Technical Note No. 601

of such a beam, and the effect of different conditions of
loading and restraint.

The problem of the lateral instability of deep rec-
tangular beams appears to have been treated first by
Prandtl (reference 1) in 1899. In the same year the prob-
lem was discussed by A. G. M. Michell (reference 2). Both
investigators arrived at substantially the same solution.
The subject was further discussed by S. Timoshenko (refer-
ence 3) , who treatei various conditions of loading and
lateral restraint. More recently, treatments of the prob-
lem have appeared in vari”ous textbooks. (See reference 4,
P* G09; reference 5, p. M9; reference”” 6, p. 239.)

That the resulting expression for allowable working
stresses may be applied generally with safety, but with-
out being unnecessarily conservative, it is necessary to
study the stability of deep rectangular beams under dif-
ferent types of loading and with various conditions of re-
straint. The solution of the stability problem for cer-
tain cases is available from the literature on the sub-
ject. For other conditions of loadine and support con-
sidered, it has been necessary to determine analytically
the expressions for the critical loads.

The available literature on the lateral stability of
deep rectangular beams. deals exclusively with the theoret-
ical aspects of the subject. No report of an experimental
investigation was found. Despite the rigor of the theo-
retical solution, an experimental investigation showing
agreement between the theory and test results would in-
crease confidence in the correctness of the theory, even
if the experimental verification was for but one condition
of loading an~ restraint. ~here are other reasons for an
experimental stuly of the subject. While the average of
the result4 of a number of tests to determine the critical
stress mig”nt agree well with the theoretically determined
value, the difference in individual results are also of
importance as indicating the variations that may be en-
countered. The problem of determining the critical load
for a deep rectangular beam does not readily yie14 to a
theoretical solution when buckling occurs at stresses be-
yond the elastic range of the rna”t~ria”l. Determination of
critical loafis in this plastic range of stresses, from
test results, would permit an empirical extension of the
results of theoretical analysis for elastic buckling that
would be of value in derivin< an expression for allowable
working stresses in such beams . Such test restilt:smight

.
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also suggest a theory for the buckline of deep beams in
the plastic rance.

Deep rectangular beams may be either of solifl sec-
tion or hollow. A brief study of the stability of hollow
rectangular beame was inclu~e.i in this investigation, with
a few tests male to corroborate the theory.

.- . .— —

The object of this investi~ation was to study the
lateral instability of deep rectangular beams ufid6r vari- “--
ous conditions of loading and restraint, with the view to

determining an expression for allowable design stfe~=e~
for such beams. The investigation included both analyti-
cal an~ experimental studies and dealt with solid and hol-
low rectangular beams. —.

ANALYTICAL CONSIDERATION “

Solid Section

The theory of the elastic instability of deep rec-
tangular beams is very well. and completely presented by
Timoshenko (reference ‘6; pp-.‘–239-256) and by Prescott
(reference 5, pp. 499-529). Both arrive a% substantially
the same expression for the critical bending moment at
which the beam becomes unstable. This expression-may be
written

Km
M —=
cr L-

L(f) . “-”-

where Mcr is maximum bending moment in the beam, in.-lb.

E, modulus of elasticity*, lb. per eq. in. —

Iz’ moment of inertia of the section about tne
greater axis, in.q

*Timoshenko uses the value for Young’ s modulus of elasti-
city, while Prescott uses the !Iplateffmodulus El =

E
where y is Poissonls ratio. This difference

~’ —.-. s
will %e discussed later in connection with the test re-
sults.
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G, modulus of rigidity, lb. per sq. in,

J, seotion factor for torsional rig fdity, in,4

L, span length, in.

K, constant depending on the conditions of load-
ing and lateral support,

For the solid rectan~lar section, the section fac-
for torsion may be expressed

.’ J = @b=d {2)

where b is width of rectangle, in.

d, depth of rectangle, in.

and PJ constant depenlinq on the r“atio d/b.

Some values for $?’ as eiven by Timoshenko (refere-
nce 7) , for ratios of ii/b representing !l~eeplt rec-
tangles are eiven in the following table:

d
6 8 10 m

G
..—

?
t
I

0.299 0.307 0.313 0.333
-..-—.~.

Perhaps” a fair average value for ~ in the stufiy of deep
rectangular beams wol~ld be 0.31.

Then

J = 0.31%34 (2a)

Further,

b’d
Iz=—

12

.

.

and, since M =. 1/3 {for aluminum alloys)

I
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Now ,
..._ ___ _

.-

s+ -“:(4)

where S is stres,s at outer fiber, lb. per sa. in.

d, %onding moment, in .-lb.

c, distance from neutral axis to outer fiber,
in., c= d/2

and I, moment of inertia of section about the short
axia

I .b&
12

(5)

The expression for tbe critical stress in a Ieep rec-
tangular beam may then be written

b~
Scr = KfE -

-Ld .. (6)

where Scr is maximum tension or compression in the beam

and Kl , a constant depending o_n the conditions of
loading and l-at”eral,support; KI = 0.591 K

This expression is, of course, valid only when buck-
ling occurs at stresses within the elastic range ‘o-ft”he -
material .

Values for the constants K and K! are listed in
table I for various conditions of loading and latera~” sup-
port, for deep rectangular beams of one span. Some of
these coefficients were obtained from sources previously
mentioned, while others, which could not be found in th~
literature, were determinefl by the authors. A brief dis-
cussion of the methods employed and the calculations for
one case may be found in the appendix.

The constants in table I apply when the loal is con-
sidered as applied at the neutral axis of the bea~m. If,
instead of being applied at the neutr~”l.axis, the load
acts at the top of the beam, the critical Stress IS .s”o.fle-
what lower. For the case of a con-cent_rateflload applied-.
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to the top of a ~eep rectangular beam at the center of
the span, Timoshenko (refmrence 6, u. 255) gives the fol- d

Iowink approximate expression for-the value “of
cal load : ,’

in which the terms are as previously defined.

the criti-

(7)

The first
term of this expression is for the critical load when ap-
pliel at the neutral axis of the be~in. The second term
in the parenthesis represents the reduction In the orlti-
cal load when applied at the top of the beam. For very
deep rectangular beams this term may be simplified by

substitution (setting J = ~~ to read
\ 3 )

(7a)

Therefore, when the concentrated loafl is applied at the
top of the beam, the constants given f.n table I for case
1 should be multiplied by the coefficient

(l– 1.42 :)
\

(7b)

A similar expression for the un~formly distributed load
(case 7) applied to the top of the beam c~n also be ob-
tained from ‘l!imoshenko~s work. (See reference 3.) For
this case the coefficient is

(8)

Hollow Section Rectangular Tube

The problem of the lateral stability of a hollow
rectangular beam has not been treated in any of the
available literature on the eubject of lateral instabili-
ty of beams probably because lateral buckling is uncommon
in such beams. Fundamentally, the problem j.s the same as
for a solid rectangular section, stability being provided
by a combination of the torsional anfl lateral f.lexural
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stiffness of the beam. Expressions for the moments of
inertia and the section factor for torsion- are, of course,
different in the case of the hollow” ’”rectangle. Also, in
attflition to the torsional stiffness of the beam (GJ) , any
tendency to twist is opposed by the benfling resistance of
the side walls of the tube in their own planes. For or-
flinary long beams, however, this latter consideration can
safely be neglected.. The expression for the section fac-
tor for torsion for a hollow rectan~le may be written
(reference 5, p. 166):

ttl (b-t)a(d-tl)=
J2= (9)

bt + dtl - t~ - t12

where t{ is thickness of site walls, in.

tl , thtckness ‘of top and bottom walls, in.

and b and t are as previously defined

This expression may be simplified, if the tubing is
of uniform wall thickness, to read’

~ = ~ t(b-t)~ (ft-t)a

b +d - 2t
(9a)

and, if t is negligibly small compared with .3 an-d d,
may be further simplified to

J
2b242t=—
b+d

(9b)

The moment of inertia about the long axis will be

b3d (b-2t)3(&2t)
Iz= —--

12 12 -
(10)

and the moment of inertia about the short axis

bfl= (b-2t) (1-2t)3
ly=—-

12 12” ~ . ““

—.

(11)

.. .
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Again, if t is negligibly small compared with b and
d, these expressions may be written

“bat
Iz = t“ ~—,d-t

2 3)

and

da t
Iy=— (

d’
3+-

. 2’ 3 )

(lOa)

(ha)

For a hollow rectangular beam in which the wall
thickness is negligibly small compared with the width “
and depth of the. section, an expression .f.orthe critical
stress can be written similar to--=qmztion (6) for the
solid section. ?l?hisexpression is

where

KU = -K ~ = 0.613K

(12)

A comparison between the stress at which lateral in-
stability WOU13 occur in a solid and a hollow deep rec-
tangular beam of the same outside dimensions may he ob-
tained by considering first a beam with a ratio of width
to depth of 1/6. Then the ~ in equation (2) will be
0,299 and the K! value in equation (6) will become

Kt = 0.580 K

and for the solid section
a

scr = 0.580 ICE ‘—
Ld

For the hollow section

scr = 0.613 K’E
$ (a E)

.

I
!

1

;

-.

.

The ratio of the critical stresses will then be
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Then if b=landd =6, the critical stress for the
hollow section will be 2.01 times the critical stress for
the soli,l section proviiel, .of course, that both beams
buckle within the elastic range.

For a. very fleep beam (b very small compared with d)
the ~ value will approach 1/3 and K’ will be the sage
as ~11. If % in the foregoing expression ~S neelected,
the ratio of tile critical stress in the hollow and the
solid beams will be about 3 to 1.

When making these comparisons between the stalility
of beams of hollow anfl solid rectangular sections of the
same outsifle Dimensions , it must be remembered that the
comparisons are on the basis of critical stress anfl not
critical bending moment. If the beams are compare~ on
the basis of critical bending moment (section modulus X
critical stress) , the solid beam, of course, will alwaYs
carry the greater moment.

riJiTERIALANJ DESCRIPTION OF TESTS

The material for this investigation consisted of 17ST
aluminum alloy rolled rectangular bar with square corners
and 17ST square-corner rectan~lar tubing. The nominal
dimensions an,~ the average tensile “properties and compres-
sive yield strengths of the ‘bars and tubing are shown in

—

table II. —

. The tensile properties of the material were deter-
mined from standard A.S.T.d. sheet specimens or round
threaded-end test specimens ~epen~ing on the thickness of
the material. Both the tensile anfi compressive yiell
streneth correspond to the stress that profiuce’i a perma-
nent set of 0.2 percent. The tensile yield stren=ths were
determined from load-strain curves 3rawn by an automatic
autoeraphic extensometer ; the compressive yiel? strengths,
from ordinary stress-strain curves.
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The rectangular bars were testefl in pairs as beams
on efl~e as shown in figure 1. Mach pair of bars was se-
curely boltefl to channel sprea~ers of approximately the
same qepth as the bars. These spreaders held the ends
of the bars vertically anl also preventefl the bars from
deflecting laterally. Fimzre 2 shows the arrangement of’
the enflsof the specimens and the methol of applying the
Ioals. The span length for the ~ by 2-inch b~r and the
:- by 2-inch bar varied from 36 fi 96 inches and for the
other bars, from 48 to 120 inches. In every case the un-
supportefl length of the bars (length of bar su%jected to
uniform bending moment) was 24 inches less than the span
length. In each of the tests the vertical deflection of
both the bars was measured at the center of the span by
means of a mirrored scale and taut wires. Lateral deflec-
tions of the bars were measured from a reference mark on
the top edge of each bar at mids”pan to fixed points in
the testing machine with a scale graduated to 0.01 inch.
While t-his method of measuring.lateral deflection was sat-
isfactory for these tests, it obviously made no distinc-
tion between lateral movement and rotation of the bars.
Both the vertical an3. lateral deflections of the bars were
measured for various increinents of load until failure oc-
curred by lateral buckling or until the extreine fiber
stress, as computefl by the flexure formula, was apprecia-
bly greater than the yield strength of the material. I-n
the case of the ~- by 6-inch bars over a span length of
48 inches, the capacity of the machine was reached before
lateral buckling occurred although the data i~dicated
that such failure was impending.

.

.
.

.

Hu~aenber~?er extensometers were use? to measure the
maximum fiber stresses at the lower loads. These instru-
ments were attachel to the top anfl bottom efiges of both
bars about 6 inches from the midfile of the span. No at-
tempt was male to measure stresses up ti~failure because
of the possibility of d.amaee to the instruments in-”&s&

—

of sufld.enfailure.

D155USSION ,.

Test Results
d

The results ofit-he beam tests are summarized in table
.

111. This table shows the computed stress at failure and
the type of failure for each test. Failure occurred Ln
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.
three distinct ways: vertical yielding, vertical yield-
ing accoflpatiied.by lateral buckling, and lateral buckling .
alone. Typical load-deflection curves for these three
types of failures are s-hewn in figures 3, 4, ant 5. Fig-
ure 3 shows tne vertical and lateral deflection data for
a ~- by 2-inch beam stressed beyond the yield strength-of”
the material. The departure of the vertical deflection
curve from a straight line was considerable, whereas the
lateral deflection was zero throughout the test. Whi Ie-

bars in this class have been described as failing by ver-
tical yielding, it should be pointed out that, had load-
ing teen continued, ultimate failure would probably have
occurre”d by lateral buc’kling in many cases. The test waa
stopped “when the stress in the outer fiber had apprecia-
bly exceedel the yieltl strength of the material. The ria-

. ture of the failure when the apparent outer iber stress.- -.

(
xc

in the beam S = -
)

“nas exceeded 45,0C0 pounds is not
I

of extreme importance since for such beams the nominal
Iesign stress of 15,000 pounfls per square inch (17ST) rep-
resents a factor of safety of at least 3. Yimre 4 shows

. the d.efl~ction Aata for a .3/9- .by 4-inch beam. In this ‘-
● case the beam was yiel.fiing in the vertical direction as

evidenced by the Aeparture of the- l.oad-~eflecti on curve
-:. from a strai~ht line, and failure occurred by lateral

buckling. That lateral. buckling occurs at a verY defi-
nite stress is evilent from the sharp break in the later-
al deflection curves. 3’i~~re 5 shovs representative de--
flection curves far, the specimens that faile~ bY Iattir-al
b,lcklinq without yielding in the vertical plane. “ .-..

The critical ,stress at which the rectangular bars
failed by lateral buckling, both in the elastic rari~e
and beyond; have been plotted in figure 6 in comparison
with the curv”e representixig the calculated values for
critical stress. ,,

.,

It is not surprising that the rectangular tube showed
no indication of lateral buckling. BaseA on the analysis
of a preceding section and, employin~ equations (9a) , (10) ,

“ and (11) , the calculated value for critical stress, a$su’rn-
ins elastic action, is about 186,000 pounds per square
inch. The critical stress for a solid bar of the same

. outside dimensions and loaded in the same manner would be
124,000 pounils per square inch. Neither of these values

I is significant as jndicatins the s“trength of the. beams
si’nce failure woulfi occur by yiellin~ instead o,f by lateral

._—



12 N.A,C.A. Technical Note No. 601
.

bucklina. A comparison of these criti’cal stress values,
however, indicates that, for beams of these proportions
(ratio of b/3 of–1/4) , the critical stress for the hol-
low tribe is abont 50 percent greater than fur the solid
ba,r, provided they buckle elastically. For elastic
‘bucklinz to occur in a rectan:eular beam of such propor-
tion, the beam would have to be extremely ion?, anfl
considerable Iefl.ections in the plane Qf the loads woulii-
be producot before lateral buckling occnrrefl. If this
deflection is congideret, the coefficient -K is fount to
be not a constant but depen’lent on the ratio of b/d, be-
ing larger for the wider beams. (See reference 6, p. 248.)

When testeq over a span length of 120 inches, the
re””ctane.ulartubes yie13.ed.-in the vertical plane with no
indication of lateral buckling as is shown in, figure 7.
Loading of---thetubes was discontinued when the vertical
deflection at the middle of the span wlis 3-1/4 inches.

Failure by Elastic Buckling

The lower straight-line portion of the curve in fiq-
u.re 6 represents the equation

ba
s = 3.’71 x 10.3 x -–x 106 (13)

Ld

which is equation .(6) with the K! value for case 2 (ta-
ble I.). The condition’s of this case Were faithfully re-
produced in the tests. The agreementi-between t-his curvo
and the points representing failure by elastic buckling
is ~ui.te satisfactory, particularly when it is remembered
that the tests were made on beams of different sizes,

Also in fiaure G is shown the straight line repre-
senting thee eqnation

s
I)a

= 3.71 x 10.9 ;;X 106 (14)

In the derivation of this equation, the value E in
equat50n (1) was replaced by the plate modulus 11’,

(
EE!=p ) , while t-he value for G remained unchanged,

l_~2 / .,

.)

I

.
,

1 —

la

.

.

(See reference 5, pp; 499-5”29.) The difference- In ~lope
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.

of these two lines is only about 6 percent. The .poin.ts
representin~ experimentally determinefl values of critical
stress fall below the upper line, indicating that perhaps””
the plate moflplus value is not applicable_ to beams .o~flhe
proportions of those tested. It is pro%”a=e t= ~or
beams of extremely deep and narrow section the critical ‘
stress WOUII be sliehtly greater than the calculated, val-
ue %ased on a modulus value of 10,3GO,OOO pounds per
sq~lare inch. ----

A stuly of the values of the constan-t KI given in
table I for various conditions of loading and restraint
indicates the importance of considering the type of load-
ing as well as the nature of the r-.estraint _ig“calculating
‘the critical stress for a deep rect”angula”r beam. For in-
stance , a comparison of the value ~f K! for cases %: 5,
and 8, shows that for a simple span with the eri”dsof the
beam held. vertical the critical stress for a uniformly
distributed load is 12 percent greater and for a concen-
trated load at the center of the span is 35 pe”tic-entgreat-- “–_
er than when the beam is subjected’ to pure bendin–g. -m, ‘–
however, “the ends of the beam are clamped in the horizon-
tal plaue (cases 2, 6, and 9) , there is very little dif-
ference in the critical stress under the different l,o~=--- ‘—’

ing conditions, being lowest for tune distributefl loati
But , if the lateral restraint consists of h“oldin”~-t%e beam
vertical at t-he ends and at ,the middle of the span (cases
3, 7’,and 10) , the critical stress for the distributed
load is 31 percent greater and for the concentratefi load,
77’ percent greater than for pure beri~~n<. ‘l_n~o~6>’i”n-–-

- .,.

stance of the importance of considering the nature of t-h-e-=
load is afforded in a comparison of the Ki values f-or
cases 14 anfi 16 or cases 13 and 15. Such a comparison
reveals that the critical stress for a deep rectangular
beam load.efias a cantilever with a uniformly distributed -

“Load acting along its neutral axis is about 60 percent
● -.

qr6ater than for ,a similar beam loaded ‘wTth a concentrate~
load at th6 free end, proviled, of course, that bu-cilil.ing‘–
occurs within the. “elastic range.

—

.
An interesting point is brought out by a comparison

of the K1 values for cases 9,an3 13, which indicates .“
that a deep rectangular beam built in at “the ends and sub-
jected to a concentrated load at the middle of the span
will fail by lateral buckling at a stress lower than t-he
critical stress for a similar beam, loaded in the same
manner , simply supported in a vertical plane but restrained
at the ends aigainst lateral deflection. The critical loa&
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for the built-in beam will be qreater than for the simply
supported beam (case 8) ,,but’will be less than twice as
great .

,.

The. effect of the posftion”o~-the applied load, rel-
ative to t-he neutral axis on the lateral stability of a
deep rectangular beam, has bebn discussed, It ia evident
from equations (7) and (8) “tha”tthis consi’ieratlon becomes
of great importance for short spans.

Stress distribution and Buckline Beyond the Elastic Ran&e

When the stress in the outer fiber. of the beam exceeds
the proportional limit of the material, the expression

s
Mc=_ no longer represents the true condition Of- stress.
I

For a team of rectangular cross section, however, it is ‘
not diff.icul$ to 3erive an expression for the stress at
the outer fibe~if it is assumed that (1) the material of
the beam is homogeneous and has the same stre.ss-slmain rel-
ationship In tension and compression, (2) that plane sec-
tions remain plane (i.e., the strain is proportional to
the dl.stance from the the neurtral axis), an~ (3) all lon-
gitudinal fibers of the beam are in simple tensf.on or com-
pression.

The stress-strain curve shown in figure 8 may also be
considered as a curve of the stress distribution on the
upper.or “lower’half of the cross section of- a rectanwlar
beam if.the axis representing stress is taken as the neu-
tral axis of the beam and the strain axis as t-he vertical
center line-of the cross section. The depth of the beam
is arbitrary, and half of the depth may be ~epre~ente& by
any distance” on the strain axis depending on the stress
conditions for th”e particular case. If half the depth o“f
the beam is considere~ to be represented by a certain dis-
tance from the ne~tral axis, as indicated in fikure 8, and
it is assumed that a beam of unit width is being dealt with,
the moment about the neutral axis of the.area bounded by
the stress-strain curve and the line representing the outer
fiber of the beam, when proper”ly cornected fmr the stress
and depth scales, represent; one-half the resisting moment
offered by a beam of ‘rectaneula.r cross .section of unit
width and of--ttiice unit depthfor that particular value of
stress at,.the outer fiber. This ”resisting moment, which
shall be called ‘R; has been determined from t-he curve in
figure 8.for different v’a~ues of stress S .at the outer

.

--

—:

I

:

,
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fiber. These results have been listed in table IV and
plotted in figure 9. In figure 9 it is evident that the
relation between S ai~ R may be ver~ closely r–epr”e- -
sented by two straight lines as shown. The lower portion
represents tune relationship- .-

S = 3R (15)

and applies for values of S lesg than 26,000 poun~s per
square inch. For stresses greater than 26,000 pounds per
square iqch the relationship is expressed by the equation

s = 12,500 + 1.56R (16)

Since R represents one-half the resistine moment
of a Ieam of rectangular section of unit width and twice
unit depth, the total resisting moment of a rectangular
section of width b anfl depth d can be shown by sca”lar
expansion to be

2M ,.
M ‘bd=or,R~—=b- .(17)--

2 bda
.

Then the maxitium fiber stress within the elastic range
will be-

-.

s
i5M

=--3R = — . (18)
bd2

.

which coincides with the expression given by the equ”ation

Mc
s = —. -. (19)

1

When stresses greater than 26,000 pounls per square
inch are involvefi, the actual value for the maximum fibe-r-
stress may be obtainefi from the expression

3.12 M
.

s = 12,500 -1-——
.

bda” -

If the value of the stress as ?ieterminel by the flex-

ure formula
(, = ,+)

is callei the
—.

\
llapparent stresis[’and
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represented by ‘A! then for values greater than 26,000
pounds per square lncb actual stress may be expressed In
terms of the apparent stress as follows:

s = 12,500 + 0.52,SA (20)

or

s- 12500
SA = ‘——

0.52
(20a)

A consideration of the stress distribution across
the section affords a logical means for determining the
critical loafl on a deep rectangular beam when stressed
be~on~ the elastlc range. If it is assumed that the ra.
tio between the mo~ulus of elasticity E and t-he modulus
of rigidity G remains unchanged, the apparent critical
stress. SA may be obtained from equation (6) provided
the proper value for the effective modulus 3 is used.
The vslue for the effective modulus used in determining
the portion of the curve in figure 6, representing lat-
eral buckling beyon~ the elastic range, was obtained as
the average modulus for all the elements of a cross sec-
tion corresponlin~ to a @articular value of stress on the
outer fiber. For the case of pure benlin~, the stress
ilistribution on all cross sections of the beam are the
same . By definition, the modulus of elasticity is the ra-
tio of change in stress to chanqe in strain. Consequently,
the modulus at any given stress is the slope of the etrese-
strain curve at that stress. This modulus value, aptly
called the “tangent 11modulus, has been plotted in figure
10 for the stress-strain curve shown in figure 8. The
average modulus for the beam for a particular value of
stress at the outer fiber would then be the average ordi-.
nate of the portion of the tangent-modulus curve below
that stress. This average modulus curve has also been
plotted in figure 10. Since it is convenient to deal in
terms of apparent rather than actual stress at the outer
fiber, the average modulus curve has also been plotted
against apparent stress in figure 10. Values from this.
curve have been used in determining the critical stress.
curve of figure 6. The relation between apparent outer
fiber stress ant average modulus can be represented by a
straight line. The equation for this straieht line is .

EA = 12,550,000 - 102 SA (21)

.

b

i
i

and from equation (6) , the critical apparent stress may
be expressed



.
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. )12550000 (K! ~E
Ld~A . —.——

i)
1 + 102 Kt b:

Lfi

(22)

This equation is applicable for stresses greater
than 22,000 pounds per square inch and p6rmits a-direct
determination of the critical apparent stress.

It is recognized that this value for the effective
modulus cannot be rigidly justified by theoretical con-
siderations . It can be shown, however, that the criti-
cal stress calculated on the basis of a more rieid the-
oretical consideration of the lateral flexural ant tor-
sional ri~idity of the learn, which WOUII inclufle an in-
volved expression for the effective modulus, mill be
sliahtly greater than the value obtained using this sim-
plified effective modulus value. It is significant to
note the agreement between the calculatefl critical stress
curve thus obtained and the experimental results (fi&re .
6) . .-

It might be pointefi out that this value for effec-
tive molulns applies only in the case of pure bending.
For other types of loaling, such as concenirated”or dfs-
tribuiefl loads, where the” distribution of stress on a
cross section varies throughout the length of the beam,
it would be necessary to consider the variation in aver-
age modulus for different sections . In such cases, the
effective rnolulus corresponding to a ~ar~icular value of
apparent stress (beyond the elastic range) would be
greater than for pure bending. ,.

As may be seen in figure 6, the curve representing
the critical apparent stress beyond the elastic range
may be closely approximated by a straight line. The
critical stress for the case of a deep rectangular beam
of 17ST aluminum alloy subjected to pure bending with the
ends fixed against. lateral deflection may be determined
from the equations for the two straight lines. For

~ X 10-6values from O to 680,
Ld .

6xlf
. .

s = 38.2 X 10
L3

(.2.3).
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For values of #~ x“ 10-.= ranging from 680 to 1,500,.

5A = lo,oo~ + (23.2 X 106 $ ) (24)

where ‘A is the apparent stress on the outer fiber

(
S*=y

)

CONCLUSIONS

I?rom this study of the lateral stability of deep
rectangular beams, the following conclusions may be
drawn:

1. The stress at which a deep rectangular beam be-
comes unstable mithin the elastic range of the material
may b~ determined from the equation

,

(6)

2. In t-he Determination of the critical stress for
a deep rectangular beam, it is important to consider the
nature of the “load-as well as the manner in which the
beam is supported”.

3. For a long deep rectangular tube in which the wall
thickness is uniform anfl is small compared with the width
and de,pth, the critical stress within the elastic range
may be expressed

4. Depending on ths ratio of b/d, the

(12)

critical stress

,

.—
..-

-“

i

I

:
1

I

for a thin-walled deep rectangular tube may be as much as .
three times as great as the critical stress for a solid
rectangular beam of the same dimensions, loaded and sup-
ported in the same manner. For a ratio of b/d of 1/4, -
the critical stress for the tube would be about 50 percent
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sreater than for a solid. bar of the same size provided
buckllng occurred elastically.

5. The- critical stress, as determined experimentally
for solid deep rectangular beams subjected to pure b?nd-
ing with t“neir ends restrain-e-d a“gainst lateral l.e~lec-
tion; agreed v%r~ well- w~th- t%e va~u–es--ile~ermi-ned’analyt-

——

ically.
.— —

6. For deep rectangular beams of solid section sub-
jected to pure bending beyond the elastic range of’ the- -
material, the critical apparent stress may be calculated

from S = K:E b2
using as the value of l! the average

z’

tangent modulus for all the elements of the cross section.
For a rectangular bar of 17ST, this average moflulus value
may be expressed by

‘A = 12550000 - 102 SA

where

SA = : > 22,000

and the critical apparent stress may be

ba
12550000 @-fi)
-

1 -1-102 @’ b;)

(21)

. -—

expressed by

(22)

‘7. The critical apparent stress for values between
the limit of the elastic range and a value of 45,000
pounds per square inch, as determined by tests on de-ep
rectangular bars subjected to pure bending with their
ends restrained against lateral deflection, was in agr6e-
ment with valnes calculated by equations (6) and [22) .
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APPI!NDIX

Since lateral buckling of a deep rect~ncular beam
consists of a combined lateral deflection and twisting
of thdbeam, both the flexural an? torsional stiffness
of the beam must be considered in determining its limit
of stability. If axes are taken as shown in figure 11
and the anele of rotation is expressed as 6, the dif-
ferential equations of equilibrium for the lateral bend-
ing and the twisting of the beam may be written

GC-=MT
dx

where EIZ is lateral flexural rigidity

GJ , torsional rigidity

(25) -

—

(26)
I
I

1

ME , lateral benqin~ moment that can be e~ressed . ‘
in terms of the external load ant the ari-
gle ~

.

MT, twisting moment that can be expresseq in
terms of the external load and some func-
tion of the lateral deflection y

Thes~ eouations may be refluceflto a differential equa-
tion of the seconl order, first degree in 0 . When thfs
differential equation has constant coefficients, as is
the case when the beam is subjected to pure bending, it
yields rea+ily to an exact solution. If the equation
has variable coefficients, a solution may be effectrefl by
the method of infinite series. This method of solution
is frequently very laborious and, in many cases, where
the curve ~ = f(x) is of simple form, the equation may
be more easily solved approximately by the method of fi-
nite differences. This methol divides the length of the
beam into equal fnt~ls and assume~ that three succes-
sive points are connected by a curve of parabolic form.
The accuracy of this method is improved by increasing
the number of intervals, but in many cases a solution of
sufficient accuracy can be obtained with surprlsin~ly
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little work. Obviously, such a methofi will not give very
accurate results through a point of contra.flexure. It
has been founl that values for critical stress determined
by this methoi are some~hat lower than values eiven by the
exact solution of t-ne differential equation.

Another method t“~t may ~e frequently used to aflvan- .
tase in the determination of the limit of lateral statiil-
ity of a beam is the energy methol usefl extensively by
Timoshenko . In this methol, the strain energy of lateral
bending plus the strain energy of twist are equatefl to the
work produced by the lower”ing of the external load caused .,

by the lateral buckling. The expressions for the external
work anl the strain energy will involve functions of both
0 anl y. From t’ne equilibrium equations (25) anfl (26)
‘noTever, one or the other of these variables can be eliml
inated , Solntion of the equation. is then accomplished %y

~~~ming a function of the variable that satisfies the
bounfiary con~.itions and effecting the integrations in-
volved . If the function of the variable assumed is the

‘ correct one, the critical load thus determined will agree
exactly. with the value determined from an exact solution
of the differential equ,ation. For any other function,. however, the critical loail determined by the energy meth-.
od will invariably be higher than tne exact solution.
The “svrain-eriergy method was found to be particularly, use-.
ful in cases involving distributed load and when the beam
was restrained. against lateral deflections. An analysis “’“—
of the effect on the stability of the learn of a displace-
ment of the loafl above or below the neutral axis can also
be readily male using this method.

—-
‘As an example of the lzse of the strain-eneray method,

calculations will be given for the”.critical value of a
uniformly ~istributel load applied at the neutraI axis” of -
a simply supported deep rectangular beam, the ends o“??whlcE
are held vertical and restrained against lateral deflec-
tion. Consider the beam shown in figure 12, loaded. with
a uniformly distributed load of w (lb. per sq. in. ) act-
ing at the neutral ax-is with the coordinate axes Aisposed
as iniiicated. The lateral enl restraining moment N is
such that the slope of the lateral Inflection cl~rve at the
ends is zero; i.e.,

where x = AL.
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The expression for the strajn energy of bending can
be writta (reference 7, pp. 303-306)

and the strain energy in torsion can be expressed

(27)

(28)

.

.

The work done by the external load corresponding to the
strain energy of bending and twisting can be expressed
(reference 3) . —-——

W = w f“ -, (~) (L” - X2) dx (29)

. .

Then the equation representing the balance between exter-
nal ahd’internal energy becomes

.

.

For these conditions of loading and restraint equa-
tion (25) becomes

EIZ
da y :( L2. .a) e-N—= ..
fix2 (31)

At this point the assumed expression from the func-
tion of 6 Is introduced. An equation of the furm

e ,( l-lx)=A1+cos Y (32)

satisfies the boundary conditions, which are

dex=*L 0=0 o
.

—=
dx

x = o 6=0
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Then equation (31) becomes

EI day
( ,)

~Al+cosn+(La-xa) -Nzp=2

Since dy/dx=Oatx=Oandx =L,

Ldaydx. or
‘o ~=

(33)

c34)”-

If for
day

its value from equation (33; be’substi -~

tuted , the restraining.moment N can be evaluated. It
is found tha”t ,. .-

N = 0.4347 wALa - _. ‘(35)

d=y
The terms — anfl ~~%~a in equation (30) can now

fix2 .’dxa~
be replacefl by expressions involving 8 _&s “the only- vari - “-”
able . Terms involvin~ any function of e can in turn be
replaced by their equivale~t from equation (32) . Xquati”oR
(30) is thus reiluceflto the form

2
w

‘L~(La. - X2~2.(1 + COS ‘;.)= - 1~JoL 0.7558&4 ,dx =
-1

GJ~a ~L

r

ax.,”
ein —:dx

La ‘0 L/

Performing the infiicated integrations.

EIZGJ
WLCR = 6.11d L=

Aluminum Company of America,
Aluminum Research Laboratories,

New Kensington, ?enna., NOV

(36)

and simplifying,

.

. 11, 1936.
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TABLE I
KS FOR DETERMINING TNE LAl

SIDE VIEW

< h

Al STABILITY OF SOUD DEEP

TOP VIEW

w

CONST/

F
ASE

I

2

3

4

5

E

6

7

I

8

9

10

r
II

—..

; 12

ECTANGULAR BEAN

K it

3.14 1.86

6.28 371

6.28 3.71

9.22 5.45

3.54 2.09

&10 3.6[

824 4.87

I

\— )

lttttt+tttt **l

. . . ..— —__ ~
t

L- V I 4.235[ 250.

. 6.47 I 3$2

11.12 6.57~.-—-+

13.1 I 7.74+- —-– -----~

!%!==3”w -— CM

+

529 3.13

5.88 348

4.01 227

13

[4

15

16

17

.

.

+

4.01 2.37

643 3.80

643 380

v*vtv Tlvtv
b

+–+
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TABLE II

Nominal Dimensions and Mechanical Properties of Rolled

SectioI

‘Bar

Bar

Bar

Bar

. Bar

Bar
a

Tub ing+

Rectangular Bar and Rectangular Tubing

17ST Aluminum Alloy

Width
(In.)

1/2

3/4

1/~

1/2

3/8

1/2

1-1/4

1
——
Depth Yield strength
(in.) (lb. /sq. in.)

l==
2 40,400

2 40,900

4 40,160

4 37,800

4 37,550

6 36,500

5 38,600

~ompressior

33,800

33,000

35,000

34,000

33,900

33,700

Tensile
strength

(lb.fm. in,)

55,530

55,400

56,520

56,400

54,340

55,930

59,450

Elongation
in 2 in.
(percent)

24.3

25.1 .

24.2

24.2

25.5

26.6

21.4

*outside dimensions; wall thickness = 0.095 in.



—

rBa

—

1

2

9

4

“6

8

?

8

9

10

11

la

13

14

15

la

17

10

la

30

al

22

23

a

35

m
—

, ,

E

a.oo7

2.012

2.012

a.ooii

1.694

1.s94

1.664

1.998

3.a23

4.000

4.014

4.ola

6.oa3

6.010

6.M6

6.005

3.W7

4.cOa

3.996

3.969

3.966

4.016

4.om

3.994

4.901

4.06a

h+?
Width

0.7%

.750

.742

.746

,4%

.4%

.447

.4a8

.al

.Em

.ma

.601

,mo

.ExM

.500

.422

.376

.377

.376

.375

. a6a

.a54

.a54

.a54

lam

1.a51

900tloI
mltiui
[ln.’3)

1.o16

1.011

1.006

.s99

.057

.668

.8*

.662

2.662?

a.676

a.698

a.626

6.062

6.025

6.002

6.lxn

a,ma

2.ma

a.m3

1.999

1.343

1.32a

1.35R

1.350

a,546

a.!w

3p8il
En@]

[in.;

96

7a

46

36

26

7a

46

%

Lao

66

7a

M

m

26

7a

46

lal

w

7a

49

la

%3

7a

46

lm

96
.

nsuppm’w

length (L)
(in.)

7a

46

a4

la

7a

42

24

12

06

7a

&

3.4

%

‘ra

46

a4

96

72

4a

24

26

7a

40

24

62

7a

TA6LE III

3UMARY OFT~~~OLT6

~a

M

3,e93 x lo-

6,824

L,526

t3,a2a

1,7X3

a,570

5,!?31

,0,344

666

07s

1,306

a,wg

43a .

578

267

1,737

%0

420

737

1,465

167

aa3

3s

673

.—

-—

ltrlas@J

(lb./

Ii-d

B,17s

6,1m

6,1E0

6,175

9,526

9,250

9,X!’O

6,653

a,3m

2,360

a,270

a,mo

1,030

1,040

lroul

1,01s

3,mo

3,126

Z,053

3,0ss

4,6M

4,*5

4,536

4,325

a,330

2,396

lb. load
in,)

;06puted

6,695

6,s35

5,245

8,LUE

9,1KI

9,130

9,155

9,035

z,a56

2,340

a,am

a,aw

220

226

l,CFM

1,000

a,936

a,Om

2,965

3,000

4,4m

4,405

4,4%

4,445

~,355

a,a65

L3xilmkl

Wplied
WJmsrit

h.-lb.

la,om

al,ooo

24,0C+I

24,01XI

10,2M

13,KM

13,w3

16,000

33,@’M

41,7m

isa,nm

60,0@3

51,600

67,050

9C,000

,m,om

la,MO

19,a20

afipam

44,403

4,4M

6,360

8,eas

17,@w

56,501

24,0M

axlm f
(lb./

Appamn

35,w

41,540

47,670

46,0m

3a,660

41,030

40,9nl

54,320

24,720

31,Ml

4$,110

44,2-40

17,0@3

2a,am

29,050

W,am

N, lm

19,130

36,am

44,4s3

6,560

a,190

13,170

a5,780

43,700

4a,4m

m atr~me

in. )

AOtual

31,a00

34,alo

37,300

37,300

39,350

?3,800

32,600

40,am

a4,720

26,ioo

36,ooO

35,800

17,0E4

32,820

a2,1ca

33,aoo

la,170

1!3,130

m.,5no

35,mo

6,6R0

B,lM

13,170

aB,780

-—

—

nature of fllllure

YIelnillg

8

u

n

m

m

Lateralbuokling

u n

ntaralbuokli$g@

LH’HllOkli.

n “
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TABLE IV

Values of Resisting Moment R
for Various Values of Stress at the Outer Fiber S

of a Bar of l’i’STAluminum Alloy

Stress
(lb. /sq. in.)

Resisting.ldoment
(in.-lb.)

10.500

20,900

28,300

31,500

33,700

35,300

36,800

38,000

3, 600

6,920

10,140

12,240

13,720

14,670

15,600

16,280

28

. ..—

.

.
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Figure 1.-8et-up for lateral instability teet of deep rectangular bars.
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